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Abstract: An off-axis monocular pupil tracker designed for eventual integration in ophthalmo-
scopes for eye movement stabilization is described and demonstrated. The instrument consists
of light-emitting diodes, a camera, a field-programmable gate array (FPGA) and a central
processing unit (CPU). The raw camera image undergoes background subtraction, field-flattening,
1-dimensional low-pass filtering, thresholding and robust pupil edge detection on an FPGA
pixel stream, followed by least-squares fitting of the pupil edge pixel coordinates to an ellipse
in the CPU. Experimental data suggest that the proposed algorithms require raw images with a
minimum of ∼32 gray levels to achieve sub-pixel pupil center accuracy. Tests with two different
cameras operating at 575, 1250 and 5400 frames per second trained on a model pupil achieved
0.5-1.5 µm pupil center estimation precision with 0.6-2.1 ms combined image download, FPGA
and CPU processing latency. Pupil tracking data from a fixating human subject show that the
tracker operation only requires the adjustment of a single parameter, namely an image intensity
threshold. The latency of the proposed pupil tracker is limited by camera download time (latency)
and sensitivity (precision).

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The human eye is in constant involuntary movement (rotation), even when fixating on a target [1–3].
When involuntary eye movement is extreme in amplitude and angular speed, often with some
periodicity, it is referred to as nystagmus [4]. Peak angular speeds in pathological nystagmus can
reach in excess of 400°/s [1,5], introducing substantial blur in flood-illumination ophthalmoscope
images and distortion in scanning ophthalmoscope images, making the diagnosing and monitoring
of eye disease challenging.

Blur and distortion are particularly problematic in adaptive optics ophthalmoscopy, due to its
high magnification and small fields of view [6–9]. Strategies for mitigating image degradation
due to eye movement in these instruments include reducing image capture or exposure time
[10], averaging multiple registered images [11,12], real-time eye movement compensation, or
a combination of these [13,14]. The potential for thermal light damage limits the shortening
of exposure times because of the necessary increase in retinal irradiance to achieve acceptable
signal-to-noise ratio (SNR). This concern can be overcome through the capture of multiple
images of the same retinal location, each with lower irradiance, followed by image registration
and averaging. Sharper images can be obtained by discarding the raw images most affected by
eye movement [11,12], although this might not be acceptable when measuring retina function
[15–17] or blood flow [18]. Thus, eye movement compensation via optical means is a more
desirable strategy, as demonstrated using retina tracking in scanning ophthalmoscopes in subjects
with physiological (i.e., normal) involuntary eye movement [14,13–20]. These methods, however,
require manual identification of an initial retinal template frame with modest distortion due to
eye movement [14,20–22], which is not possible in subjects with pathological nystagmus.

Purkinje and pupil tracking are alternatives to retina tracking with lower retinal irradiance
that are also robust to ocular media opacities. Purkinje image tracking has been used for
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eye movement stabilization [23,24] using analog electronics achieving a remarkable 20 arcsec
root-mean-square (RMS) pupil center estimation precision (inverse of repeatability) and, as of
today, an unsurpassed 500 Hz closed-loop correction bandwidth. Subject alignment and operation
complexity, however, have prevented the adoption of this technology beyond research settings.
Pupil tracking using digital cameras [25–28], offers the potential for simpler operation and lower
costs, but improved precision and lower latency are required for eye movement compensation
in subjects with nystagmus. Some of the most advanced efforts in this direction include: a
400 frames/s head-mounted pupil tracker using a field-programmable gate array (FPGA) with
2 ms calculation latency and ∼20 µm precision [29], a central processing unit (CPU) based
560 frames/s pupil tracker with 4 ms calculation latency with 35 µm precision [30,31], and
a commercial device (Eyelink 1000 Plus, SR Research, Ontario, Canada) that captures 2,000
frames/s with 1.4 ms nominal calculation latency and 2 µm precision. Here, we present a pupil
tracker built with off-the-shelf components aiming at improving the performance and cost of
these devices for eventual eye movement stabilization in subjects with nystagmus. It is important
to recognize that retina tracking accuracy through pupil imaging, could be fundamentally limited
by the fact that the eyeball is not a rigid body [32,33], and that the crystalline lens wobbles in
response to saccades [34,35]. This wobble, however, can be corrected through modeling of the
lens as a damped harmonic oscillator, after estimation of the undamped angular frequency and
damping ratio of each eye [35].

This manuscript is structured as follows. In section 2, we describe optical setups, two cameras,
electronics, and algorithms used to estimate pupil position and orientation. In section 3 we
present validation and test experiments using three different hardware configurations to explore
the precision-latency compromise, before a summary is presented section 4.

2. Methods

The pupil tracker, depicted in Fig. 1, consists of an optical system with infrared illumination that
relays the pupil of the eye onto a complementary metal oxide semiconductor (CMOS) camera
connected to an FPGA in a computer with a CPU. Three versions of this optical system were
tested using two different cameras to achieve different spatial and temporal sampling.

2.1. Illumination

The eye is illuminated with two 940 nm light-emitting diodes (LEDs; SMBB940DS-1100-02,
Marubeni, Tokyo, Japan) to the left and right of the lens closest to the eye. This off-axis
illumination produces images in which the pupil of the eye appears dark with two vertically
aligned corneal reflections (Purkinje images). As it will become apparent later, this vertical
alignment mitigates the number of pupil edge pixel candidates affected by the LED Purkinje
images. The LED wavelength was selected to keep photoreceptor stimulation to a minimum, as
the photopic spectral luminous efficiency function at 940 nm is lower than 10−6 [36]. This choice
of wavelength makes the pupil tracker compatible with most ophthalmoscopes and psychophysical
experiments.

The use of two LEDs, rather than one, spreads the retinal irradiance across two areas with their
centers separated by ∼25° of visual angle, providing better light safety than using a single LED.
For the purpose of calculating the maximum permissible exposure (MPE) using the American
National Standard for the Safe use of Lasers (ANSI Z136.1-2014) [37], we considered the most
conservative scenario, that is, we assume that LED light is focused onto a spot on the retina. In
practice, the emitting area of each LED is not a point, and the LEDs would only be focused on
the retina if the subject is accommodating or is myopic. For this scenario, the MPE for 10-30,000
seconds for a 940 nm continuous wave source focused on the retina is 1.16 mW. The power of
the LED pair at the eye was kept below this value at all times.
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Fig. 1. Pupil tracker optical setup, where BP filter is an interferometric band-pass filter,
and L1 to L3 are achromatic doublets. The camera is tilted relative to the optical axis to
compensate for the 45° object plane tilt which facilitates integration with ophthalmoscopes
or other devices.

2.2. Cameras

The pupil tracker was evaluated with two CMOS cameras with extended-full configuration
CameraLink interfaces when capturing 8-bit depth images, to achieve the maximum download
data rate that this interface allows. The first camera was an acA2000-340km NIR (Basler
AG, Ahrensburg, Germany), with ∼15% quantum efficiency at the 940 nm pupil illumination
wavelength, 5.5 µm pixel size, and a maximum data bandwidth of 820 Mpix/s, calculated
as the product of the camera’s internal clock rate (82 MHz) and the 80 bits per clock cycle
provided by the 10-tap configuration. The second camera, an Eosens-3CL (Mikrotron GmbH,
Unterschleissheim, Germany), with ∼5% quantum efficiency at 940 nm, 14 µm pixel size, and a
maximum theoretical bandwidth of 710 Mpix/s (Camera Profile 7), when the internal camera
pixel clock operates at 75 MHz. The use of the 10-tap CameraLink configuration requires that
total number of pixels in the camera region of interest (ROI) is a multiple of 10.

2.3. Optical setups

Three optical setups were used, with an approximate 18 mm square field of view, tilted 45° with
respect to the optical axis, and correspondingly tilted image plane (Scheimpflug imaging). For
an average human eye, this field of view allows to capture pupils up to 10 mm in diameter [38]
with gaze changes of ±20° [39–42]. All three optical setups are telecentric to mitigate pupil size
changes due to axial head translation. The “front” of the optical setup consists of the LEDs used
for illumination, an achromatic doublet (L1 in Fig. 1), a fold mirror, an interferometric band-pass
filter (84-792, Edmund Optics, Barrington, NJ, USA or FB940-10, Thorlabs, Newton, NJ, USA),
and an iris diaphragm that defines the numerical aperture of the system. This front portion of the
setup was fixed, allowing quick switching of the “rear” section, which includes two achromatic
lenses (L2 and L3) and a custom adaptor in which the camera is inserted with a tilt matching
that of the image plane. The off-the-shelf lenses and their separation were chosen to achieve the
desired magnification, while keeping the imaging performance close to diffraction-limited.
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The three optics-camera combinations are referred hereon as: Basler high resolution (-0.18
magnification), Basler high frame rate (-0.085 magnification) and Mikrotron high frame rate
(-0.13 magnification). In the high resolution Basler configuration, the camera captured 460×660
pixel images with a 1.7 ms exposure at 575 frames/s, while in the high frame rate Basler setup,
210×300 pixel images were captured with 0.7 ms exposure at 1250 frames/s. The high frame
rate Mikrotron setup was used to capture 210×284 pixel images with 0.18 ms exposure at 5400
frames/s.

The optical components (excluding the bandpass filter for simplicity) and their separation
along the optical axis for all three configurations are listed in Table 1 and Table 2 below. Image
distortion due to the optical setups (i.e., ignoring refraction at the ocular surfaces) across the
field of view is ∼0.1%. The 100 mm eye clearance was selected to facilitate integration with
existing and new ophthalmoscopes, without the need for dichroic mirrors or beam splitters.

Table 1. Separation and tilt of elements in Basler camera optical setups.

High frame rate High resolution

Element Manufacturer Part #
Thickness
(mm) Tilt (°) Part #

Thickness
(mm) Tilt (°)

Eye 100.0 45.0 100.0 45.0

Lens 1 Edmund Optics 49-377 197.4 0.0 49-377 197.4 0.0

Iris Thorlabs SM1D12C 9.2 0.0 SM1D12C 12.5 0.0

Lens 2 Thorlabs AC127-
050-B

9.5 0.0 AC254-
050-B

26.0 0.0

Lens 3 Thorlabs AC127-
019-B

9.7 0.0 AC254-
050-B

13.5 0.0

Camera Basler acA2000-
340kmNIR

- 5.1 acA2000-
340kmNIR

- 10.3

Table 2. Separation and tilt of elements in Mikrotron camera optical setup.

High frame rate

Element Manufacturer Part # Thickness (mm) Tilt (°)

Eye 100.0 45.0

Lens 1 Edmund Optics 49-377 197.4 0.0

Iris Thorlabs SM1D12C 13.4 0.0

Lens 2 Thorlabs AC254-075-B 16.6 0.0

Lens 3 Thorlabs AC254-030-B 18.2 0.0

Camera Mikrotron EoSens-3CL - 8.5

2.4. Computing hardware

The raw pixel values of the camera are downloaded to a reconfigurable frame grabber (PCIe-1477;
National instruments, Austin, TX, USA). This device has a Kintex-7 325T FPGA, that was
custom programmed using the LabVIEW FPGA module (National Instruments) and the Vivado
Design Suite (Xilinx, San Jose, CA, USA). The frame grabber was installed in a PCIe slot of
a computer with an i7-6850K CPU (Intel Corporation, Santa Clara, CA, USA) and a GeForce
GTX 1050 discrete graphics processing unit (GPU; Nvidia, Santa Clara, CA, USA). The data
flow across hardware components and the algorithm architecture are summarized in Fig. 2, with
the FPGA and CPU used for pupil tracking and the GPU for displaying images and data using a
custom Python wrapper of the Open Graphics Library (OpenGL, Khronos Group, Beaverton,
OR, USA) [43].
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Fig. 2. Hardware and data flow diagram used in the proposed pupil tracker. The converging
arrows onto the Raw/processed image indicate that the pupil image can be transferred to the
CPU RAM after any of the corresponding processing steps.

The key to achieving pupil tracking with low latency is to process pixel values as soon as
they arrive to the FPGA, through what it is often called a “pixel stream.” This is faster than the
paradigm in which the image processing does not start until the camera image is fully downloaded
to a CPU or a GPU. In what follows, the FPGA image processing steps are sequentially ordered
so that each new set of pixels arriving to the FPGA with a “tick” of the camera clock, which
pushes the previous pixels along the pixel stream. The use of an FPGA allows deterministic
timing, because FPGAs only execute programmed processing commands, unlike most CPUs
which need to interleave tasks required by the operating system.

2.5. Raw data re-packaging

The first FPGA operation is the re-arranging of the raw pixel values from 80-bit chunks, provided
by the CameraLink interface, to the 64-bit chunks used in the pixel stream processing. This
re-packaging facilitates the data upload to and retrieval from the FPGA DRAM, needed for the
background subtraction and field-flattening described later, as well as transferring image data to
the CPU RAM through the PCI-e interface for eventual display. Both the FPGA and camera
clocks operate at their maximum respective frequencies, to minimize processing time.

The repackaging was implemented using the LabVIEW component IMAQ FPGA Camera
Link Pixel Packer U8× 10.vi (National Instruments), which must operate at least 1.25 times
faster than the camera pixel clock, that is, at 102.5 MHz. Because this is faster than the 100 MHz



Research Article Vol. 12, No. 10 / 1 Oct 2021 / Biomedical Optics Express 6501

FPGA clock, we used a custom FPGA 110 MHz clock domain, a first-in first-out (FIFO) queue
in the 110 MHz domain and a FIFO in the 100 MHz domain.

2.6. Background subtraction and field flattening

A background image is generated as the median of a sequence of images collected with the
camera ROI, gain and exposure settings to be used for pupil tracking, and with the first lens of
the optical setup covered. This background image is stored in the FPGA DRAM and subtracted
from every image in the pixel stream after pixel data re-packaging, to mitigate fixed pattern noise
typical of CMOS cameras. After this subtraction, negative values are forced to zero.

The background subtraction is followed by a field flattening step which consists of pixel
multiplication by a matrix with values equal or larger than one, aiming to compensate for
non-uniform illumination, non-uniform pixel sensitivity and vignetting in the optical setup. This
matrix is generated by first capturing and averaging a sequence of images of a white flat tilted
(45°) piece of paper illuminated with the NIR LEDs. After subtracting the previously estimated
background, the resulting image is low-pass filtered using a two dimensional Gaussian filter of
user-selectable sigma (width; set to 5 pixels in this work) and normalized by the maximum pixel
value. The field flattening matrix is then formed by the inverse pixel values converted to a 16-bit
fixed positive decimal numbers in the 0 to 31.999512 range. This data type is a compromise
between accuracy, dynamic range, and FPGA resource utilization.

A binary mask, derived from the illumination profile used for field flattening is created to tag
the pixels deemed to be too poorly illuminated to be useful for pupil tracking, including those
with zero pixel value. This vignetting mask is used by the FPGA logic to exclude these pixels in
the pupil edge search.

The background image, the field-flattening matrix and the vignetting mask are all calculated in
the CPU, interleaved in 8-byte, 16-byte, and 8-byte chunks, respectively, before uploading to
the FPGA’s dynamic RAM (DRAM). From there, 64-byte chunks are transferred to and from
the FPGA block RAM buffer from which they will be read one 32-byte chunk for every pixel
stream clock cycle. In order to cope with the non-deterministic FPGA DRAM access, 32 of these
32-byte chunks are buffered in FPGA memory. After background subtraction and multiplication
by the field flattening matrix, the resulting pixel values are output as unsigned 8-bit integers,
clamping values larger than 255 to 255.

2.7. Low-pass filtering

Random noise that varies from frame to frame is evident in raw images from both cameras. This
is illustrated by the cross-sections of a defocused background-subtracted field-flattened image
of a piece of paper in Fig. 3 below (blue curves). In the absence of noise, such line would be
horizontal (i.e., zero root-mean-square; RMS). In order to mitigate this noise, the camera images
are convolved with a 1-dimensional (1D) Gaussian finite impulse response filter with 15 elements
and unit energy after field flattening. This 1D low-pass filtering was selected over 2-dimensional
filtering to reduce FPGA code complexity and resource utilization. Median filtering was initially
considered, but discarded because its previously thought edge-preserving property has recently
been proven incorrect, other than for very high signal-to-noise ratio scenarios [44]. The 1D filter
is Gaussian with standard deviation of 4 pixels, which in the images shown in Fig. 3, reduce the
image RMS by a factor of 3 (red curves).

It is important to note that the 1D filtering blurs image features, including the pupil edge that
we seek to identify for tracking. A benefit of this blur, however, is the smoothening of undesirable
edges that might confuse the pupil tracking, such as eyelashes and eyebrows.
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Fig. 3. Cross section of a defocused Basler camera image of a white piece of paper
illustrating the amplitude of random noise at three normalized gain values before and after
the proposed one-dimensional low-pass filtering.

2.8. Thresholding

After the 1D filtering, pixels darker than a threshold intensity are set to one while pixels brighter
than the threshold are set to zero, as a first step to identify the dark pixels that are likely to be
part of the pupil. This pixel classification relies on the simple observation that when under
near-infrared off-axis illumination, the pupil of the eye is darker than the skin, sclera, iris,
eyebrows and natural eye lashes in human subjects of all ethnicities. The grey level histograms of
images from the front of the eye typically have two broad peaks, with one corresponding to the
darker pixels within the pupil, as can be seen in Fig. 4. Here, we adopt the widely utilized strategy
of selecting the threshold value as the grey level that corresponds to the minimum between these
two broad histogram peaks [30,45,46]. Thresholding, however, does not adequately exclude eye
pixels that are dark due to eyelash makeup, which as the lower panels in Fig. 4 show, can be as
dark as, or even darker than the pupil pixels.

Fig. 4. Images (left), pixel histograms (middle) and thresholded images (right) of the same
eye without (top) and with (bottom) eyelash makeup. The makeup shifts the histogram in
areas corresponding to eyelashes to darker values, resulting in the thresholding of non-pupil
pixels.
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2.9. Detection of left-right edge pairs

Following the thresholding, the FPGA pixel stream looks for left-right edge pairs within each
line of the binary image, starting from the left side. In this algorithm, a left edge is a one-valued
pixel preceded by (the user-defined) nout zero-valued pixels, while a right edge is defined as a
one-valued pixel preceded by a left edge and minimum nin consecutive one-valued pixels followed
by nout zero-valued pixels. These edges pairs are shown in the sample images of Fig. 5 as red
dots. A few pixels at the start and end of each line are excluded from the edge search region. The
number of these excluded pixels is the maximum of the radius of the 1D filter and nout columns.

Fig. 5. Binary and raw pupil images (logarithmic intensity grey scale) from a subject
wearing dark eyelash makeup that results in the thresholding of numerous non-pupil pixels.
The annotations illustrate how the left-right edges are identified for ellipse fitting (green),
and which ones are discarded by the median linear fit (red) or the clustering (yellow with red
outline, none in this figure). The black arrows indicate the LED Purkinje images (corneal
reflections), which in the left images is (incorrectly) classified as a pupil edge because it is
close to it.

As the binary images in both Fig. 4 and Fig. 5 show, dark image features such as eyelashes with
makeup, can appear in the thresholded binary image, potentially resulting in undesired left-right
edge pairs. Two additional algorithms, applied in sequence, seek to remove these undesirable
edge pairs. First, we exploit a geometrical property of ellipses that says that the centers of all
left-right edge pairs must lie along a line. A robust fit of the edge pair centers by low-pass filtering
(7 value-wide average window) their horizontal coordinates is followed by the calculation of the
median slope of all consecutive edge pairs (left to right and top to bottom), and the corresponding
median intercepts. Then, the edge pairs with centers further than a user-defined distance from the
line defined by the median slope and intercept are discarded in a first iteration, before a second
iteration with tighter tolerance (see dashed and continuous green lines in Fig. 5). The second
algorithm, creates clusters of left and right edges based on their separation, retaining only those
with a user-defined minimum number of edge pixels.

2.10. Ellipse fitting

In pupil tracking, the coordinates of the pupil edge pixels are often fit to a circle [46–48] or an
ellipse [49,50]. These are mathematically convenient geometrical models that do not account for
the irregular inner edge of a pupil but seem adequate for tracking eye movement. In our pupil
tracker we fit the coordinates of the pixels identified as pupil edges to an ellipse and use the
ellipse center and orientation to track eye movement, defined as the rotation of the visual axis,
commonly defined as passing through the pupil center [51]. We assume that the orientation of
the ellipse is due to eye rotation around the pupil center (cyclotorsion).
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In our model, the column (xi) and row (yi) coordinates of each of the N pupil edge points
identified in the previous steps are used to fit an ellipse of the form,

Ax2
i + Bxiyi + Cy2

i + Dxi + Eyi + F = 0. (1)

By re-arranging the coordinates of each point as a set of linear equation in the unknowns
B/A, C/A, D/A, E/A, and F/A, we get the linear matrix equation,
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...

xNyN y2
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We find a least-squares solution to this system of equations by multiplying both sides by the
transpose of the first matrix on the left, and then invoking a solve routine that uses the software
library for numerical linear algebra LAPACK [52]. The solution is then used to calculate the
ellipse semi-major axis (a), semi-minor axis (b), orientation (θ), and center location (xo, yo)
using the canonical equations [53],
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2.11. Subjects

The study protocol adhered to the tenets of the Declaration of Helsinki and was approved by
the Institutional Review Board of Stanford University. Three volunteers with no known ocular
pathology were enrolled. The subjects were positioned in front of the pupil tracker using a bite
bar attached to a 3-axis translation stage to align and stabilize their head during data collection.

3. Tests and results

3.1. Image dynamic range

Camera gain, camera exposure and/or LED illumination power in pupil tracking are often adjusted
to use most of the camera dynamic range. Here, we explore how pupil center estimation is
affected when using a reduced dynamic range, for example by lowering the camera gain to achieve
lower readout noise or lowering LED power for improved light safety.

As a first experiment, we compare the center of a fitted ellipse in a pupil image of a human
subject as we right bit-shift the image (i.e., we divide the pixel values by two, only retaining the
integer portion) and the image threshold (initially set to 32). If we consider the center of the
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ellipse in the original image as the ground truth, the panels in Fig. 6 show that up to a bit-shift of
4 the ellipse center estimation remains within a fifth of a pixel. If this pixel shift is considered
acceptable, then the pupil tracker could be used with a combination of camera gain, camera
exposure and LED power that creates images with a dynamic range of just 32 grey levels. When
the pupil image spans only 16 gray levels, the ellipse center shifts both vertically and horizontally
by more than one pixel. This testing is far from exhaustive, and such a test should be repeated for
each experimental condition and choice of algorithm parameters, but it suggests that it is not
necessary to capture images with a 256 grey level dynamic range.

Fig. 6. Raw (linear intensity scale) and binary pupil images from a subject wearing dark
eyelash makeup that results in the thresholding of numerous non-pupil pixels. All raw
images are generated by bit-shifting (right) the original raw image (top left). The annotations
show the edges identified for ellipse fitting (green), and those discarded by the median linear
fit (red) and the clustering (yellow with red outline, none in this figure).

In a second experiment, we captured images of an eye changing the camera gain while keeping
camera exposure and LED power constant. The resulting raw images, contrast-stretched for
display purposes, and the corresponding binarized images after thresholding images are shown
in Fig. 7. Ignoring the corneal reflections, the images can be thought of having an approximate
dynamic range between 3 and 8 bits, or between 8 and 256 grey levels, respectively. When
the image spans only 8 gray levels, the best threshold value to segment the pupil of the eye
is 1, which is also the minimum possible. As the corresponding binary image shows, many
non-pupil pixels and edges appear, which indicates that the image dynamic range is too small
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to separate the pupil from other dark image features, even though most non-pupil edge pixels
(red) are correctly discarded. Whenever the raw image spans 32 or more gray levels, there is no
noticeable difference in the binarization. As before, this is a very crude test, but it suggests that
combinations of camera gain, exposure and illumination power that achieve a minimum image
dynamic range of 32, ignoring Purkinje images, are desirable.

Fig. 7. Raw pupil images (linear intensity scale) captured on the same subject using different
camera gains and the corresponding binary images after thresholding. The annotations show
the edges identified for ellipse fitting (green), and those discarded by the median linear fit
(red) and the clustering (yellow).

3.2. Precision

The precision of the pupil tracker was evaluated by capturing sequences of 100 images of a 6 mm
black circle printed on white paper, as a model pupil. These image sequences were captured
using all three optical setups using light levels that would make the image span either 64 or 256
gray levels. For the Basler camera, image sequences were captured with normalized gain values
0.0, 0.5 and 1.0. The Mikrotron camera does not allow gain changes. The ellipse parameter
repeatability, defined here as the standard deviation across the 100 repeated measurements, is
reported in Fig. 8 for all experimental conditions. The conversion factor (0.3438) between
microns of pupil movement and arc minutes of estimated rotation was calculated assuming that
in an average eye, the pupil is ∼10 mm from the center or rotation of the eye.
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Fig. 8. Repeatability (standard deviation) of fitted ellipse parameters across 100 images of
a 6 mm diameter circular model pupil, spanning either 64 or 256 gray levels.

For the Basler camera, it can be seen that the precision worsens with increasing gain, as the
amplification of the readout electronics results in higher signal but lower SNR. Also, increasing
pupil sampling improves precision, but at the cost of exposing the eye to more light. The overall
ellipse parameter precision from the Mikrotron camera images is superior to that of the Basler
camera, although due to their difference in quantum efficiency at 940 nm, the Mikrotron camera
requires approximately three times higher intensity. In agreement in with the experiments from
the previous section, the bar plots also show that 256 gray level images provide superior precision
with respect to 64 gray levels, by between a few percent and up to a factor of two.

3.3. Latency

Here we define pupil tracking latency as the time required to: readout the camera sensor, download
the pixel values to the FPGA, complete the FPGA calculations which overlap with the image
download, transfer the pupil edge coordinates from the FPGA to the CPU, and the ellipse fitting.
This definition is independent of the camera exposure, which we choose to maximize frame rate
while also minimizing peak optical power delivered to the eye. Timing and latency measurements
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summarized in Table 3 below, were performed using an oscilloscope MSO 2024B (Tektronix,
Beaverton, OR, USA) using the end of the camera exposure signal as the time origin and custom
FPGA output TTL signals.

Table 3. Pupil tracking timing and latency measurements.

Camera ROI (pix) Exposure (ms) Readout (ms)
Calculation
FPGA (ms)

Calculation
CPU (ms) Latency (ms)

Basler
460×660 1.7 1.7 0.08 0.3 2.1

210×300 0.7 0.8 0.04 0.3 1.2

Mikrotron 210×284 0.18 0.18 0.04 0.3 0.6

Latency is critical for stimulus delivery and eye movement stabilization because its inverse
is the maximum possible correction bandwidth, which in the configurations listed in Table 3
correspond to 476, 833 and 1,667 Hz, respectively. The actual latency of a stabilization loop will
be larger, due to the latency of the particular device(s) used to compensate eye movement.

3.4. Human subject pupil tracking

In order to demonstrate the proposed pupil tracker, we present two datasets collected in opposite
extremes of the precision and latency ranges. The subject was not screened or selected due to any
particular ocular or fixation feature that would be beneficial for pupil tracking. All user-selectable
parameters had their default values and were not changed, other than for the intensity thresholding
value, which was adjusted based on the live display of the camera image histogram and a live
view of the thresholded image.

The first dataset, shown in Fig. 9, was collected over an ∼3 s period using the high resolution
Basler configuration. The camera gain was set to its minimum value (zero), which resulted in
almost negligible background signal, with a maximum of one gray level (i.e., all pixel values
are either 0 or 1). The illumination mask shows the LED illumination profile, which appear
dark in the center at the particular distance between the LED and the paper screen. The fact that
the illumination mask values span over more than an order of magnitude results in the pupil
images being substantially changed by the field flattening operation, in which non-pupil dark
image areas become much brighter. The annotations in this image show the edges used to fit the
ellipse, the ellipse itself and its center. These annotations allow visual confirmation that some
of the pixel edges shifted due to the bright Purkinje image on the left of the pupil have been
successful discarded, while others have not, indicating that further algorithm refinement would
be beneficial. Having said that, giving the small number of edge pixels biased by the Purkinje
image it appears that the fitted ellipse is not substantially affected. A potential strategy to address
this small bias, would be to implement robust ellipse fitting, meaning discarding fitting outliers
and repeat the fitting one or multiple times, at the cost of increased latency.

The pupil position and rotation plots in Fig. 9 are typical of a subject fixating on a stationary
target, with slow drifts separated by small saccades that are easily identified as spikes in these
curves. The spectra or these time sequences show that at approximately 100 Hz, the frequency
amplitudes appear to reach a noise/precision floor.

The summary of the second dataset, collected over a 5 s period using the Mikrotron camera
“high frame rate” setup can be seen in Fig. 10. In this configuration, and because the background
image is almost comparable to the raw image, the background subtraction has a dramatic impact.
The illumination mask and the field flattening here are similar to those seen in Fig. 9. The
annotations in the sample image also show the successful discarding of pixel edges due to the
bright Purkinje images, but this time without clearly biased edges in the vicinity. A magnified
inset of the pupil position shows the pupil position during a saccade.
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Fig. 9. Sample pupil images (18 mm field of view) and eye movement captured using the
high resolution Basler camera configuration in a normal fixating subject at 575 Hz and
zero camera gain. The images show the raw camera image before and after background
subtraction, as well as before and after field flattening. The plots show the pupil translation
and rotation across an approximately 3 s period, and their corresponding spectra.
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Fig. 10. Sample pupil images (18 mm field of view) and eye movement captured using
the high resolution Mikrotron camera configuration in a normal fixating subject at 5400 Hz.
The images show the raw camera image before and after background subtraction, as well as
before and after field flattening. The plots show the pupil translation and rotation across an
approximately 5 s period, and their corresponding spectra.
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The pupil position and rotation plots in Fig. 10 appear “thicker” than those in Fig. 9, which
is indicative of larger variability due to a lower spatial sampling, an order of magnitude higher
temporal sampling and lower camera sensitivity. This is quite noticeable in the magnified inset
showing a saccade, with large sample-to-sample variability before, during and after the saccade.
As with the previous figure, the spectra show a noise floor reached at approximately 100 Hz.

4. Summary

A low-latency monocular pupil tracker using a hybrid FPGA-CPU computing approach was
described and demonstrated. This approach reduces latency by overlapping the image processing
in a pixel stream with its download from the camera, as opposed to the more conventional
approach in which images are fully downloaded before processing starts. The image processing
consists of calculations that only require access to the values of adjacent pixels along the same
image line, including background subtraction, field-flattening, thresholding, pupil edge detection
and discarding of outliers, all performed on the FPGA. The final step, ellipse fitting is performed
on the CPU. To illustrate that the approach is camera-agnostic, two cameras from different
manufacturers were evaluated using three different optical setups. showing latencies in the 0.6-2.1
ms range with sub-pixel precision in a model pupil. Two simple tests suggest that the proposed
approach works even when using only a small fraction (one eighth) of the camera 8-bit dynamic
range. Pupil tracking precision in a model pupil can be as good as sub-micron and as poor as ten
microns depending on the camera, optics magnification and LED power levels. These values
should not be assumed to apply to pupil tracking in human subjects when object reflectivity
and contrast are lower than that of the model pupil. Finally, pupil tracking was successfully
demonstrated in a normal fixating subject at 575, 1250 and 5400 frames per second (1250 data
not shown for brevity).

In summary, the proposed FPGA-CPU approach seems well suited for tracking the pupil
with precision comparable and/or better than that of current pupil trackers and with comparable
or lower latency. The high precision and low latency achieved make the device suitable for
applications that require real-time eye movement compensation such as retinal imaging, retinal
functional testing, retinal laser treatment and refractive surgery. Neither precision nor latency
are currently limited by the FPGA or the CPU, but rather the camera quantum efficiency, SNR
and download time. Should new cameras with superior specifications become available, pupil
tracking precision and latency would be immediately improved.
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